

ATOMIC STRUCTURE

Presented by

Mr. S. S. Chivate

M.Sc. (Chem) NET, B.Ed.

Head, Department of Chemistry and Agrochemicals & Fertilizers

**Shri Shivaji College of Arts, Commerce & Science,
Kandhar**

Affiliated to S.R.T.M. University, Nanded.

Atomic Models

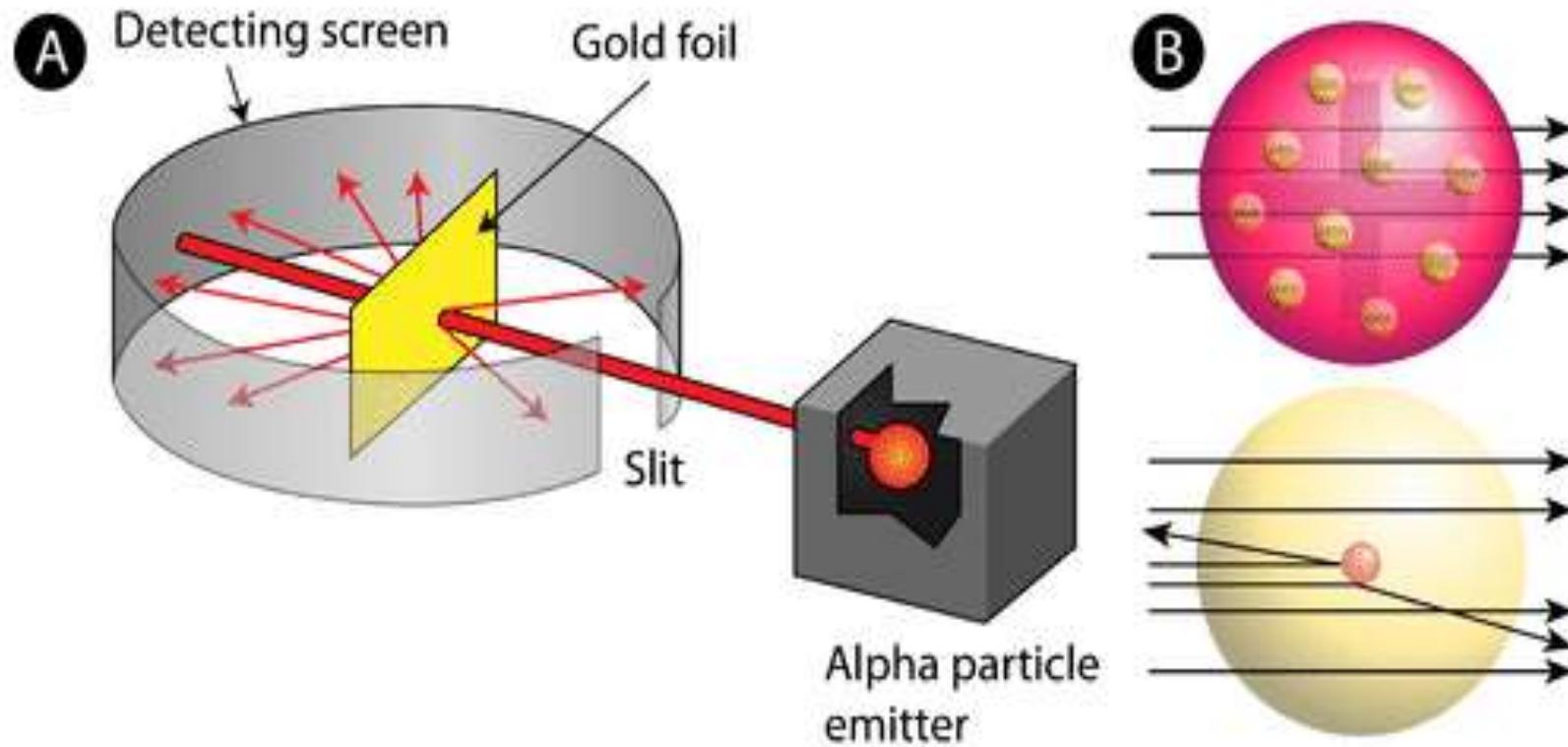
1. Dalton's Atomic Model (1803)

Atoms are **tiny, solid, indivisible spheres**

All atoms of the same element are identical

Atoms combine in simple whole-number ratios

Limitation: Didn't explain subatomic particles


2. Thomson's Plum Pudding Model (1897)

Atom is a **positively charged sphere**.

Electrons are embedded inside it like “plums in pudding.”

Limitation: No nucleus.

3. Rutherford's Nuclear Model (1911)

Rutherford's Alpha Particle Scattering Experiment

Observations

- 1. Most α -particles passed straight through the gold foil without any deflection.**
- 2. Some α -particles were deflected through small angles.**
- 3. Very few α -particles were deflected back (rebounded).**

Limitations

- Could not explain the **stability of electrons** around the nucleus.
- Failed to explain **atomic spectra**.

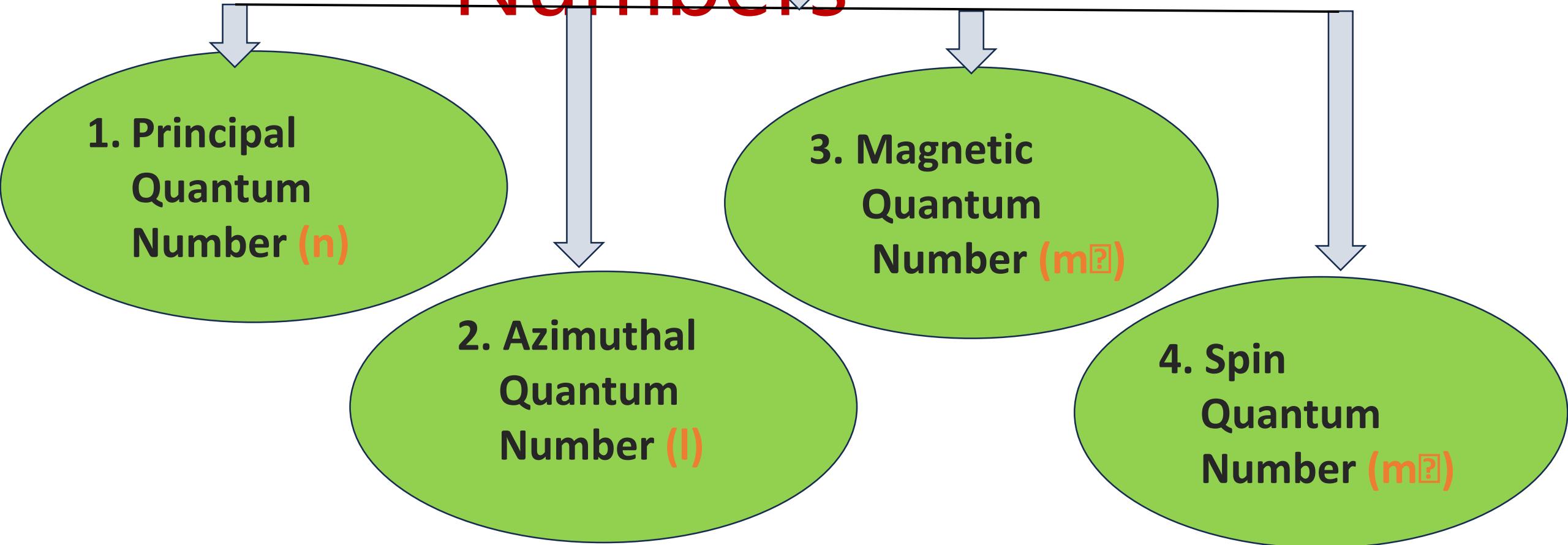
Conclusions

- 1. Most of the atom is empty space** (because most particles passed straight through).
- 2. Positive charge and most of the mass are concentrated** in a very small region called the **nucleus**.
- 3. The nucleus is small, dense, and positively charged.**
- 4. Electrons revolve around the nucleus.**

4. Bohr's Model (1913)

Postulates :-

- 1) Electrons move around the nucleus in fixed circular paths called orbits or energy levels.
- 2) While moving in a permitted orbit, an electron does not lose or gain energy.
- 3) Each orbit has a fixed energy($E = h\nu$) and these energies increase as the distance from the nucleus increases.
- 4) Electrons can revolve only in those orbit whose angular momentum is an integral multiple of $h/2\pi$.


Merits

1. Successfully explains the **line spectrum of hydrogen** and hydrogen-like atoms.
2. Explains **atomic stability** (electrons do not spiral into nucleus).
3. Provides correct values for:
 - Radius of orbit
 - Energy of electron
4. Gives theoretical basis for **Rydberg equation**.
5. Explains **ionization energy** of hydrogen atom.

Demerits

1. Fails to explain spectra of **multi-electron atoms**.
2. Cannot explain **fine structure** of spectral lines.
3. Does not explain **Zeeman effect** (magnetic field).
4. Does not explain **Stark effect** (electric field).
5. Violates **Heisenberg's uncertainty principle**.
6. Does not consider **wave nature of electrons**.

Quantum Numbers

1. Principal Quantum Number (n)

- Values: 1, 2, 3, ...
- Indicates energy level (shell) and size of orbital
- Number of orbitals in a shell = n^2
- Maximum electrons in a shell = $2n^2$

2. Azimuthal Quantum Number (l)

- Values: 0 to $(n - 1)$
- Determines shape of orbital
- $l = 0$ (s), $l = 1$ (p),
 $l = 2$ (d), $l = 3$ (f)

3. Magnetic Quantum Number (m_l)

- Values: $-l$ to $+l$ (including zero)
- Determines the orientation of orbitals in space
- Number of orbitals = $2l + 1$
- Example:
For $l = 1$ (p-subshell) \rightarrow
 $m_l = -1, 0, +1 \rightarrow 3$ orbitals

4. Spin Quantum Number (m_s)

- Symbol: m_s
- Values: $+\frac{1}{2}$ or $-\frac{1}{2}$
- Significance:

Describes the spin of the electron

Explains magnetic properties of atoms

1) Aufbau Principle

- Electrons are filled in orbitals in order of **increasing energy**.

2) Hund's Rule of Maximum Multiplicity

- In a given subshell, electrons occupy degenerate orbitals singly first before pairing.

Pauli's Exclusion Principle

- No two electrons in an atom can have the same set of all four quantum numbers.

Thank
you!

